
Target-Pathogen Methodology 
 
All data present in Target Pathogen database is based either on the in-silico calculation of               

selected properties for each protein or, on the integration and meta-analysis of publicly             

available data. The pipeline-engine which we call Target Pathogen is schematically shown            

below. 

 

 

Figure 1. A general sketch of the pipeline. Structural druggability and metabolic analyses are 

integrated with available experimental and in silico data. After all data is integrated in Target- 

Pathogen, an user designed scoring function is used to weight differents features in order to 

obtain a ranked list of candidate drug targets  

 

Generation of Structural homology based models 
For all ORFs in Mycobacterium tuberculosis, Klebsiella pneumoniae and Shigella          

dysenteriae genomes we attempted to build homology-based models using the following           

structural genomic pipeline. The first step consists in performing a psi-blast search against a              

template library, which includes all sequences from every individual protein chain in the             

PDB, grouped at 95% sequence identity threshold using CD-hit (Li and Godzik 2006). Then,              

every target structure was built with the MODELLER software (Eswar et al. 2008), using              

local alignment derived from the above-described psi-blast search (Altschul et al. 1997). For             

each target sequence, 5 different models were built, and their quality measures were             

assigned using the GA341 (Melo and Sali 2007) and QMEAN (Melo and Sali 2007; Benkert,               
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Tosatto, and Schomburg 2008) methods. The best model (max QMean Score) for each             

protein was kept. Previosuly, only the models with GA341 score above 0.7 and over 60%               

coverage were retained. Other models were obtained from Modbase database (Pieper et al.             

2014).  

For or all the structures (crystals and models) we then compute several structural properties              

like: i) the DS for each pocket using fpocket, ii) the similarity with human protein (to evaluate                 

potential off-target effects), iii) The active site residues (if available) by using data from              

Catalytic Site Atlas (CSA) (Furnham et al. 2013) and iv) The PFAM conserved or family               

relevant residues.  

 
Structural Assessment of Druggability 
Structural druggability of each potential target was assessed by determining (and           

characterizing) the ability of putative pockets to bind a drug-like molecule by using the              

fpocket program (Schmidtke et al. 2010) and DrugScore (DS) index (Schmidtke et al. 2010;              

Schmidtke and Barril 2010). Briefly, the method is based on Voronoi tessellation algorithm to              

identify pockets and computes suitable physicochemical descriptors (hydrophobic density,         

polar and apolar surface area, hydrophobic and polarity score) that are combined to yield the               

DS, which ranges between 0 to 1. Figure 2 shows a histogram for the druggability score                

computed for those pockets present in all unique protein in the Protein Data Bank, which               

were crystallized in complex with a drug like compound that correspond effectively to the              

binding pocket is shown: 
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Figure 2: In blue, histogram for the druggability score computed for all those pockets present in all unique protein 
in the Protein Data Bank, which were crystallized in complex with a drug like compound inside the corresponding 
pocket. In red, the gaussian fitting of the pocket classification sets. 
 
Fitting the resulting histogram to a gaussian distribution results in a mean of 0.7 with a standard                 

deviation of 0.2. As expected the DS computed for all pockets in the PDB, except those having                 

inside a drug like molecule, show a distribution that peaks at DS of zero, and falls rapidly (See                  

Green plot in Figure 3) 

 

Figure 3: In green, the druggability score computed by fpocket software for all the pockets in all the structures of                    
the PDB database except those having inside a drug like molecule which are shown in blue. 
 
Based on this analysis we classified each pocket according to the following four categories,              

non druggable (ND), with DS between 0 and 0.2, poorly druggable (PD), with DS between               

0.2 and 0.5, Druggable (D) with DS between 0.5 and 0.7, and highly druggable (HD) with DS                 

between 0.7 and 1. In the web application, visualization is available for the first three               

categories but statistics are available for all the detected pockets regardless of its             

druggability score. 

Active site pocket identification 

To identify the active site pocket and/or determine the relevance of a given pocket to protein                
function, Target-Pathogen uses TuberQ `s methodology (Radusky et al. 2014). It consist in             
two different analyses, that rely on, (i) the information from the CSA (Catalytic Site Atlas)               
and (ii) a PFAM position site importance criteria 
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The data from CSA (downloaded from http://www.ebi.ac.uk/thornton-srv/databases/CSA/)       
consists of a list of PDB linked to a number of residues, which comprise the corresponding                
protein active site. To map the active sites to as many protein and/or domains as possible,                
each PDB in CSA was assigned to a protein with that PDB hit.  

As an alternative approach to determine the relevance of a given pocket (or residue),              
we looked for residues of a given PFAM family/domain that are located in an important               
position and are well conserved. Important positions were defined as those positions in the              
corresponding HMMer model whose information content was larger than a defined           
importance cutoff value (icov). The nature of the conserved amino acids in the corresponding              
position was determined by comparing each residue type emission probability (ep) with icov.             
If the ratio between ep and icov was larger than a conserved type cutoff value (ctcov), the                 
corresponding residue type was assumed to be conserved. Optimal values of icov and ctcov              
were 0.27 and 0.24, respectively.  

Off-target and essentiality criteria 

All proteins in the database were subjected to NCBI-BLASTp (e-value smaller than 1e-07)             

against human proteome to identify non-host homologs targets. The criteria for regarding a             

protein as a human homologue were a sequence similarity of greater than 30% using a               

BLOSUM62 matrix, for a length of more than 30% of the bacterial query protein with an                

E-value less than 10-4. 

Furthermore, all proteomes were submitted to the Database of Essential Genes (Zhang            

2004a; Luo et al. 2014)(DEG, which contains experimentally validated genes under different            

conditions in three domains of life) for homology analyses (Barh et al. 2013; Zhang 2004b) .                

The BLASTp cut-off values used were: e-value = 1e-05, bit score ≥100, identity ≥ 35% (Barh                

et al. 2011). Only Mycobacterium tuberculosis essential genes were defined as in previous             

works (Defelipe et al. 2016; Radusky et al. 2014) 

 
Metabolic network construction 
Metabolic networks (MN) were built by using the PathoLogic algorithm within Pathway Tools             

v. 19.0 (Karp et al. 2016) ( or a previously existing PGDB was used when it was available ) .                    

PathoLogic creates a Pathway/Genome Database (PGDB) containing the predicted         

metabolic pathways of a given organism using as input a Genbank file with the              

corresponding product annotations and gene coordinates along the genome. The Genbanks           

entries were downloaded from NCBI (http://www.ncbi.nlm.nih.gov/) and were used as initial           

input for MN reconstructions. The steps involved in the reconstruction include determining            

gene-protein-reaction associations, which are based in either the availability of the           
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corresponding enzyme commission (EC) number or alternatively in the gene product           

annotation, using a custom dictionary within Pathway Tools which links products to            

reactions. The reconstructed metabolic network was exported in systems biology markup           

language (SBML) and format for downstream analyses. Reactions involving macromolecules          

(such as DNA, RNA and proteins, as per the BioCyc ontology) were filtered, and only the                

small-molecule complement of the MNs was considered. After MN reconstruction, we           

generated a list of all compounds present in the network, and we collected their frequency as                

reaction participants using a Python script. Those who most frequently appeared as reaction             

participants are considered currency compounds (such as ATP, cofactors, water) and were            

disregarded from the network since they may create artificial links on the graph-based             

representation of the network as they are involved in many reactions which are not              

necessarily related.  

Metabolic network analysis. 

After MN reconstruction, we generated a reaction graph, where nodes represent reactions            

(i.e usually enzymes) and there is an edge between two nodes if the product of one reaction                 

is used as substrate on the reaction that follows. Cytoscape v. 2.8.3 was used for data                

visualization and further MN analyses (Karp et al. 2016; Russell and Cohn 2012).             

Choke-point analysis was conducted in order to identify potential drug targets from the             

metabolic perspective. We also calculated the betweenness centrality of every node in MN,             

using the betweenness_centrality function in the NetworkX python package. The          

betweenness centrality of a given node , in the graph , where is a set     , C (v)v  B     V , )G = ( E   V    

of vertices or nodes and a set of edges is given by:     E         (v) = =CB = ∑
 

 
s / t / v ∈ V σst

σ (v)st  

(Brandes 2001) where is the number of shortest paths from to and   σst         s∈ V  t∈ V (v)σst  

represents the number of shortest paths from  to  that some node lies in.s t v ∈ V   
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